38 research outputs found

    The Biomimetic Mineralization Closer to a Real Biomineralization

    Get PDF

    Hybrid CQ projection algorithm with line-search process for the split feasibility problem

    Get PDF
    Abstract In this paper, we propose a hybrid CQ projection algorithm with two projection steps and one Armijo-type line-search step for the split feasibility problem. The line-search technique is intended to construct a hyperplane that strictly separates the current point from the solution set. The next iteration is obtained by the projection of the initial point on a regress region (the intersection of three sets). Hence, algorithm converges faster than some other algorithms. Under some mild conditions, we show the convergence. Preliminary numerical experiments show that our algorithm is efficient

    Fractal characteristics of shale pore structure and its influence on seepage flow

    No full text
    The migration law of shale gas has a significant influence on the seepage characteristics of shale, and the flow of the gas is closely related to the pore structure. To explore the influence of shale pore parameters on permeability in different diffusion zones, the pore structure of the shale in the Niutitang Formation in Guizhou, China, was analysed based on liquid nitrogen adsorption experiments and nuclear magnetic resonance experiments. The relationship among fractal dimension, organic carbon content (TOC) and BET-specific surface area was analysed based on the fractal dimension of shale pores calculated using the Frenkel–Halsey–Hill model. Shale permeability was calculated using the Knudsen number (Kn) and permeability equation, and the influence of the fractal dimension and porosity in different diffusion zones on shale permeability was analysed. Previous studies have shown that: (i) the pores of shale in the Niutitang Formation, Guizhou are mainly distributed within 1–100 nm, with a small total pore volume per unit mass, average pore diameter, large BET specific surface area and porosity; (ii) fractal dimension has a negative correlation with average pore diameter and TOC content and a quadratic relationship with BET specific surface area; and (iii) permeability has a positive correlation with Kn, porosity and fractal dimension. In the transitional diffusion zone, fractal dimension and porosity have a significant impact on permeability. In the Knudsen diffusion zone, porosity has no obvious effect on permeability. The methodologies and results presented will enable more accurate characterization of the complexity of pore structures of porous media and allow further understanding of the seepage law of shale gas

    Optimization of SOFC stack gas distribution structure based on BP Neural network and CFD

    No full text
    The flow field distribution of solid oxide fuel cells significantly affects the performance of the stack. The flow uniformity can be improved and the power generation efficiency can be improved by optimizing the gas distribution structure of the stack. Based on the simplified 6kW stack model, the stack gas distribution structure with two-stage buffer cavity was designed, and the stack model was numerically simulated by ANSYS Fluent software. The BP neural network model, which can predict the uniformity of the outlet of the integrated stack, is established successfully. The parameters of the gas distribution structure are analyzed and optimized by using the orthogonal test and BP neural network. The results show that at the same time considering pile distribution structure under the condition of surface area and uniformity, when the first stage inlet buffer chamber depth is 40 mm, the channel width is 40 mm, the secondary inlet buffer chamber depth is 80 mm, can effectively reduce the electric pile distribution structure, surface area, to reduce heat loss, at the same time guarantee the integrated electric reactor outlet flow uniformity of more than 96%, greatly improves the efficiency of power generation

    F-Box Protein DOR Functions As a Novel Inhibitory Factor for Abscisic Acid-Induced Stomatal Closure under Drought Stress in Arabidopsis1[C][W]

    No full text
    Guard cells, which form stoma in leaf epidermis, sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. Under drought stress, plants synthesize abscisic acid (ABA), which in turn induces a rapid closing of stoma, to prevent water loss by transpiration. However, many aspects of the molecular mechanism for ABA-mediated stomatal closure are still not understood. Here, we report a novel negative regulator of guard cell ABA signaling, DOR, in Arabidopsis (Arabidopsis thaliana). The DOR gene encodes a putative F-box protein, a member of the S-locus F-box-like family related to AhSLF-S2 and specifically interacting with ASK14 and CUL1. A null mutation in DOR resulted in a hypersensitive ABA response of stomatal closing and a substantial increase of drought tolerance; in contrast, the transgenic plants overexpressing DOR were more susceptible to the drought stress. DOR is strongly expressed in guard cells and suppressed by ABA treatment, suggesting a negative feedback loop of DOR in ABA responses. Double-mutant analyses of dor with ABA-insensitive mutant abi1-1 showed that abi1-1 is epistatic to dor, but no apparent change of phospholipase Dα1 was detected between the wild type and dor. Affymetrix GeneChip analysis showed that DOR likely regulates ABA biosynthesis under drought stress. Taken together, our results demonstrate that DOR acts independent of phospholipase Dα1 in an ABA signaling pathway to inhibit the ABA-induced stomatal closure under drought stress

    Human umbilical cord mesenchymal stem cell-derived extracellular vesicles alleviated silica induced lung inflammation and fibrosis in mice via circPWWP2A/miR-223–3p/NLRP3 axis

    No full text
    Silicosis is a progressive inflammatory disease with poorly defined mechanisms and limited therapeutic options. Recent studies found that microRNAs (miRNAs) and circular RNAs (circRNAs) were involved in the development of respiratory diseases; however, the function of non-coding RNAs in silicosis was still needed to be further explored. We found that miR-223–3p was significantly decreased in macrophages and lung tissues of mice after silica treatment, which were consistent with the results of GEO database microarray analysis. Notably, NLRP3 is a target gene downstream of miR-223–3p. And circular RNA PWWP2A (circPWWP2A) was significantly elevated after silica stimulation. To elucidate the role of these RNAs in silica-induced inflammation in macrophages and lung tissues, we investigated the upstream molecular mechanisms of circPWWP2A on the inflammatory response. The inhibitory effect of miR-223–3p on its target NLRP3 was suppressed by circPWWP2A, which led to lung fibrosis. Our study found that circPWWP2A could adsorb miR-223–3p to regulate NLRP3 after silica stimulation in pulmonary fibrosis. And our results revealed that the circPWWP2A–miR-223–3p–NLRP3 axis was potentially instrumental in managing silica-induced inflammation and fibrosis. Previous studies have demonstrated that human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs) exhibit anti-inflammatory and anti-fibrotic effects in multiple organs. However, the potential effectiveness of hucMSC-EVs against silicosis or the underlying mechanisms of their biological outcomes remains unclear. Therefore, we used 3D culture technology to extract hucMSC-EVs and observed their effects in macrophages and lung tissues, respectively. According to the EVmiRNA database, miR-223–3p was abundant in MSC-EVs. In addition, hucMSC-EVs may modulate lung function, reduce the secretion of inflammatory factors (NLRP3, IL-1β, IL-18 and cleaved Caspase-1) and attenuate the deposition of fibrosis-related factors (Collagen Ⅰ, Collagen Ⅲ, fibronectin and α-SMA). In vitro results evinced that hucMSC-EVs reduced the inflammatory response of macrophages and restricted the activation and proliferation of fibroblasts. Moreover, our study showed that hucMSCs-EVs acted as a mediator to transfer miR-223–3p to suppress circPWWP2A, thereby alleviating pulmonary fibrosis through the NLRP3 signaling pathway. These data may provide potentially novel strategies for investigating the pathogenesis of silicosis and developing novel treatments for this disease

    Response Characteristics of Electric Potential and Its Relationship with Dynamic Disaster during Mining Activities: A Case Study in Xuehu Coal Mine, China

    No full text
    Across the world, coal resource is widely utilized in industrial production. During coal mining activities, dynamic disasters may be induced, such as coal and gas outbursts, or rock burst, resulting in serious accidents or disasters. Previous studies have shown that electric potential (EP) signals can be produced during the deformation and fracture process of coal and rock mass under load. The abnormal response characteristics of EP can reveal the damage evolution and failure feather of coal mass. In this paper, the response characteristics of EP signals are analyzed with high gas testing during mining activities within deep coal seams, and the relationship between the EP response and outburst disaster hazard is studied. The results show that: (1) Under the comprehensive action of mining stress and gas effect, the coal mass was damaged and fractured, which can produce abundant EP signals, while the temporal EP response characteristics can reflect the loading state and damage evolution process inside the coal seam. (2) When coal cannon and a sudden increase of gas concentration occurred in the coal mass, the EP signal was at a high level and fluctuated violently. This can be regarded as precursory information for an outburst risk, which was verified by monitoring the results of mining stress and electromagnetic radiation (EMR). (3) Based on the unilateral inversion imaging method, EP spatial distribution law was studied and abnormal zones with high-value were identified. The zone is close to, or coincident with, the high value interval of EMR intensity and count indexes, which revealed the distribution characteristics of coal damage localization. Hence, EP monitoring results can forecast precursor information of outburst hazards temporally, and identify local zones with outburst hazard spatially. This study provides a new idea and application basis for using the EP method to monitor and prevent coal and rock dynamic disaster hazards in the field

    Inhibition of macrophage pyroptosis ameliorates silica-induced pulmonary fibrosis

    No full text
    Macrophage pyroptosis has recently been involved in some inflammatory and fibrosis diseases, however, the role of macrophage pyroptosis in silica-induced pulmonary fibrosis has not been fully elucidated. In this study, we explored the role of macrophage pyroptosis in silicosis in vivo and in vitro. A mouse model of silicosis was established and mice were sacrificed at 7, 14, and 28 days after exposure of silica. The results revealed that the expression of GSDMD and other pyroptosis-related indicators was up-regulated obviously at 14 days after silica exposure, indicating that silica induced pyroptosis in vivo. In vitro, human monocytic leukemia cells (THP-1) and human lung fibroblasts (MRC-5) were used to detect the relationship between macrophage pyroptosis and lung fibroblasts. It showed that silica increased the levels of GSDMD and other pyroptosis-related indicators remarkably in macrophages and the supernatant of macrophage stimulated by silica could promote the upregulation of fibrosis markers in fibroblasts. However, GSDMD knockdown suppressed silica-induced macrophage pyroptosis and alleviated the upregulation of fibrosis markers in fibroblasts, suggesting the important role of macrophage pyroptosis in the activation of myofibroblasts during the progression of silicosis. Taken together, it showed that silica could induce macrophage pyroptosis and inhibiting macrophage pyroptosis could be a feasible clinical strategy to alleviate silicosis

    The Role and Mechanism of Hydrogen-Rich Water in the <i>Cucumis sativus</i> Response to Chilling Stress

    No full text
    Cucumber is a warm climate vegetable that is sensitive to chilling reactions. Chilling can occur at any period of cucumber growth and development and seriously affects the yield and quality of cucumber. Hydrogen (H2) is a type of antioxidant that plays a critical role in plant development and the response to stress. Hydrogen-rich water (HRW) is the main way to use exogenous hydrogen. This study explored the role and mechanism of HRW in the cucumber defense response to chilling stress. The research results showed that applying 50% saturated HRW to the roots of cucumber seedlings relieved the damage caused by chilling stress. The growth and development indicators, such as plant height, stem diameter, leaf area, dry weight, fresh weight, and root length, increased under the HRW treatment. Photosynthetic efficiency, chlorophyll content, and Fv/Fm also improved and reduced energy dissipation. In addition, after HRW treatment, the REC and MDA content were decreased, and membrane lipid damage was reduced. NBT and DAB staining results showed that the color was lighter, and the area was smaller under HRW treatment. Additionally, the contents of O2− and H2O2 also decreased. Under chilling stress, the application of HRW increased the activity of the antioxidases SOD, CAT, POD, GR, and APX and improved the expression of the SOD, CAT, POD, GR, and APX antioxidase genes. The GSSG content was reduced, and the GSH content was increased. In addition, the ASA content also increased. Therefore, exogenous HRW is an effective measure for cucumber to respond to chilling stress
    corecore